Whether in a garden landscape or the wilds of the coastal Pacific Northwest, the bright splash of late-spring blooms produced by the Pacific ninebark (*Physocarpus capitatus*) is a floral show well worth seeing. The shrub’s profuse, snowball-like clusters of white flowers appear in May and June, making this the perfect time to seek out the plant at Washington Park Arboretum—or in its natural habitats, which include stream banks, wet meadows, and the edges of moist, lowland forests.

However, as we’ll see, lovely spring flowers aren’t the only draw! This fast-growing, adaptable native species has many other features to admire and is a true, four-season wonder.

Beautiful Form, Flowers, Fruits and Bark

Pacific ninebark is a shrub above—quite literally—since it can achieve heights of up to 18 feet tall (though it typically tops out at a more modest 12 feet in height). The long branches of the species initially shoot straight upwards, but with time and gravity they arch outwards and droop at the tips to give the plant an attractive, domed shape.

The shrub’s toothed, bright-green deciduous leaves are palmate (resembling an open hand), bearing three to five pointed lobes. The foliage is somewhat reminiscent of that of maples and currants—though ninebark is not related to either. (The genus *Physocarpus* is a member...
the Rosaceae or rose family.) In fall, those leaves turn a rose-brown color before dropping to the ground to expose the fantastic branches beneath.

As the branches age, their bark peels away in layered strips, giving rise to the species’ common name. (According to folklore, there are nine of these bark layers.) The exfoliating bark ranges in color from reddish gray to light tan and gives each branch the appearance of being covered in fine shreds of paper. This decorative trait provides interest throughout the winter.

Like all members of the rose family, Pacific ninebark produces five-petaled flowers. These are small, with bright-white, yellow-centered corollas and pink anthers (pollen sacs). However, the flowers are bundled together on the branch tips into dense, hemispherical clusters, about two to three inches wide—creating an eye-catching display. The flowers are beloved by native bees, and they develop into clusters of small, inflated, red to reddish-brown fruit capsules that often persist into winter. (The genus name is a reference to the inflated fruits, deriving from the Greek physa, meaning “bladder” and carpos, meaning “fruit”; the species name, capitatus, is from the Latin word for “head,” a reference to the round shape of the inflorescence.)

Native Range and Indigenous Uses

Pacific ninebark belongs to a genus made up of 10 species, all but one of which is native to North America. Our local *Physocarpus capitatus* has an impressive distribution, stretching along the West Coast from southeast Alaska to the mountains of Santa Barbara County in California. It sticks mainly to the western lowlands in our state, but also dwells east of the Cascades, along the Columbia River and into northern Idaho. Because it grows in a range of environments up and down the coast, it adapts well to a variety of soil and light conditions.

The new shoots of Pacific ninebark have traditionally been used by indigenous people to make arrow shafts, which require a straight, narrow stem to fire properly. The Cowichan also use the stems to make knitting needles. And
because of the stems’ pithy center and straight growth, they work well for lighting friction fires. The bark and stems of the shrub are poisonous, but are traditionally used in small amounts by the Coast Salish and other indigenous groups for medicinal purposes, including as a purgative and a laxative.

In the Landscape

Because of ninebark’s adaptability and all-around good looks, it is not uncommon to find the shrub in the human landscape of the Pacific Northwest, both in native plant gardens and mixed, traditional horticulture. It looks great at the back of a mixed border or hedgerow, or it can form graceful, arching thickets in a more naturalized setting. Its multi-stemmed habit provides cover and protected nesting sites for birds and other small animals. The species prefers moist to wet soils and partial shade; however, it also does well in full sunlight and can tolerate a small degree of drought.

Pacific ninebark also has an extensive, fibrous root system, which comes in handy if you’re looking for a plant to control erosion or help stabilize a slope. It’s easy to propagate from unrooted cuttings and live stakes, and this makes the plant particularly valuable for streambank and lakeshore restoration. The species may also be trained through layering (a technique for propagating new specimens from stems that are still partially attached to the mother plants), and it responds well to pruning, with new vigorous growth appearing from the base.

At the Arboretum and Beyond

The Arboretum has about a dozen specimens of Pacific ninebark, including one by the upper pond in the Woodland Garden that dates to 1950, and a relatively new grouping in the Pinetum, planted as part of the recent restoration efforts along Arboretum Creek. Probably the easiest place to observe the plant is in the Cascadia Forest, which features six wild-collected specimens dating to 2008. A couple of these specimens grow right along the switchback trail, affording an up-close view of the bark, leaves, flowers and fruits.

To see the plant in a larger-scale setting, head over to the Center of Urban Horticulture, where you’ll find major plantings in the newly restored shoreline of the Union Bay Natural Area, and in adjacent Yesler Swamp. UW Botanic Gardens Associate Director Ray Larson says the plantings of Pacific ninebark have been particularly successful. This tough and beautiful native species seems like a perfect candidate for urban gardens, especially those with “problematic” wet spots. No problem at all!

Theodore Hoss is a graduate of the UW School of Environmental and Forest Sciences. A nature educator and writer, he currently works on campus with the UW Groundskeepers.

Bibliography

